Schedule

Dec.22nd
Register

Dec.23rd	
9:00-10:00	Speaker 1
	Title:TBD
	Abstract:TBD
10:00-10:30	Tea Break
	LIU JI HAO
	Minimal model program for algebraically integrable
	foliations
	I will report the establishment of the minimal model
	program for algebraically integrable foliations on klt
10:30-11:30	varieties and it applications, such as the minimal model
	program for generalized pairs and the canonical bundle
	formula. If time permits, I will discuss some related open
	problems and their connections to moduli theory. This talk
	is partially based on a series of joint works of myself with
	Guodu Chen, Jingjun Han, Fanjun Meng, and Lingyao Xie.
11:30-13:00	Lunch
	Chen Bingyi
	Explicit bounds of singularities on Fano fibrations
	It was conjectured by McKernan and Shokurov that given
13.00-14.00	a Fano fibration from X to Z, the singularities on Z are
13.00-14.00	bounded in terms of those on X. Recently this conjecture
	was proved by Birkar. In this talk, I will discuss explicit
	bounds of singularities on Z in this conjecture in relative
	dimension one and in the toric case.
14:00-14:30	Tea Break

	Zou Yu
14:30-15:30	Title:TBD
	Abstract:TBD
15:30-16:00	Jia Jia
	Speaker 5
	Equivariant Kähler model for Fujiki's class C
	Let X be a compact complex manifold in Fujiki's class C,
	i.e., admitting a big (1,1)-class [\alpha].
	Consider Aut(X) the group of biholomorphic
	automorphisms and Aut_{[\alpha]}(X) the subgroup of
	automorphisms preserving the class [\alpha] via pullback.
16.00 17.00	We show that X admits an Aut_{[\alpha]}(X)-equivariant
10.00-17.00	Kähler model.
	I will talk several applications.
	We show that Aut_{[\alpha]}(X) is a Lie group with only
	finitely many components, which generalises an early
	result of Fujiki and Lieberman on the Kähler case.
	We also show that every torsion subgroup of Aut(X) is
	almost abelian, and Aut(X) is finite if it is a torsion group.
	This is based on a joint work with Sheng Meng.
17:00-19:00	Dinner

Dec.24th	
9:00-10:00	Jeongseok Oh
	The quantum Lefschetz principle
	"Quantum Lefschetz" is a pretentious name for
	understanding how moduli spaces and their virtual
	cycles and associated invariants change when we apply
	certain constraints. (The original application is to genus 0
	curves in P^4 when we impose the constraint that they lie
	in the quintic 3-fold.)

	When it doesn't work there are fixes (like the p-fields of
	Guffin-Sharpe-Witten/Chang-Li) for special cases
	associated with curve-counting. We will describe joint
	work with Richard Thomas developing a general theory.
10:00-10:30	Tea Break
	Artan Sheshmani
	BV differentials and Derived Lagrangian intersections in
	moduli spaces of surfaces on Fano and CY threefolds.
	We elaborate on construction of a derived Lagrangian
	intersection theory on moduli spaces of divisors on
	compact Calabi Yau threefolds. Our goal is to compute
	deformation invariants associated to a fixed linear system
10.00 11.00	of divisors in CY3. We degenerate the CY3 into a normall
10:30-11:30	crossing singular variety composed of Fano threefolds
	meeting along a K3. The deformation invariance
	arguments, together with derived Lagrangian intersection
	counts over the special fiber of the induced moduli space
	degeneration family, provides one with invariants of the
	generic CY fiber. This is report on several joint projects in
	progress with Ludmil Katzarkov, Tony Pantev, Vladimir
	Baranovsky and Maxim Kontsevich.
11:30-13:00	Lunch
	Hossein Movasati
	Detecting Gauss-Manin and Calabi-Yau differential
	equations
	In this talk I will review few conjectures which aim to detect
13:00-14:00	which linear differential equations come
	from Gauss-Manin connections, that is, they are satisfied
	by periods of families of algebraic varieties.
	This includes conjectures due to Katz-Grothendieck,
	André and Bombieri-Dwork. I will discuss another finer

	criterion to detect differential equations coming from
	families of hypergeometric Calabi-Yau varieties. Finally, I
	will explain a classification list in the case of Heun and
	Painlevé VI equations (joint works with S. Reiter).
14:00-14:30	Tea Break
	Yuuji Tanaka
	A blowup formula for sheaf-theoretic virtual enumerative
	invariants on projective surfaces and its applications
	After mentioning some backgrounds, I'll talk about a
	blowup formula for sheaf-theoretic virtual enumerative
	invariants on projective surfaces and its applications at the
	level of the generating series of those invariants. For
	instance, we obtain Goettsche-Kool's conjectural blowup
14.20 15.20	formulae for the generating series of the virtual Euler
14.30-15.30	characteristics and virtual \$\chi_y\$-genera of the moduli
	spaces, in which modular forms appear in the same way as
	in Vafa-Witten's original paper in '94. This determines
	some of universal functions in the generating series of
	Vafa-Witten invariants on a projective surface, which were
	conjectured also by Goettsche-Kool and Goettsche-Kool-
	Laarakker. These are based on joint work arXiv:2107.08155
	with Nikolas Kuhn and arXiv:2205.12953 with Nikolas Kuhn
	and Oliver Leigh.
15:30-16:00	Tea Break
	Speaker 10
16:00-17:00	Title:TBD
	Abstract:TBD
17:00-19:00	Dinner

Dec.25th		
9:00-10:00	Caucher Birkar	

	Title:TBD
	Abstract:TBD
10:00-10:30	Tea Break
	Speaker 12
10:30-11:30	Title:TBD
	Abstract:TBD
11:30-13:00	Lunch
	Speaker 13
13:00-14:00	Title:TBD
	Abstract:TBD
14:00-14:30	Tea Break
14:30-15:30	Seung-Joo Lee
	Title:TBD
	Abstract:TBD
15:30-16:00	Tea Break
16:00-17:00	Speaker 15
	Title:TBD
	Abstract:TBD
17:00-19:00	Dinner

Dec.26rd	
9:00-10:00	Speaker 16
	Title:TBD
	Abstract:TBD
10:00-10:30	Tea Break
10:30-11:30	Speaker 1
	Title:TBD
	Abstract:TBD
11:30-13:00	Lunch